499 research outputs found

    MCMC with Strings and Branes: The Suburban Algorithm (Extended Version)

    Get PDF
    Motivated by the physics of strings and branes, we develop a class of Markov chain Monte Carlo (MCMC) algorithms involving extended objects. Starting from a collection of parallel Metropolis-Hastings (MH) samplers, we place them on an auxiliary grid, and couple them together via nearest neighbor interactions. This leads to a class of "suburban samplers" (i.e., spread out Metropolis). Coupling the samplers in this way modifies the mixing rate and speed of convergence for the Markov chain, and can in many cases allow a sampler to more easily overcome free energy barriers in a target distribution. We test these general theoretical considerations by performing several numerical experiments. For suburban samplers with a fluctuating grid topology, performance is strongly correlated with the average number of neighbors. Increasing the average number of neighbors above zero initially leads to an increase in performance, though there is a critical connectivity with effective dimension d_eff ~ 1, above which "groupthink" takes over, and the performance of the sampler declines.Comment: v2: 55 pages, 13 figures, references and clarifications added. Published version. This article is an extended version of "MCMC with Strings and Branes: The Suburban Algorithm

    Weak Lensing with SDSS Commissioning Data: The Galaxy-Mass Correlation Function To 1/h Mpc

    Full text link
    (abridged) We present measurements of galaxy-galaxy lensing from early commissioning imaging data from the Sloan Digital Sky Survey (SDSS). We measure a mean tangential shear around a stacked sample of foreground galaxies in three bandpasses out to angular radii of 600'', detecting the shear signal at very high statistical significance. The shear profile is well described by a power-law. A variety of rigorous tests demonstrate the reality of the gravitational lensing signal and confirm the uncertainty estimates. We interpret our results by modeling the mass distributions of the foreground galaxies as approximately isothermal spheres characterized by a velocity dispersion and a truncation radius. The velocity dispersion is constrained to be 150-190 km/s at 95% confidence (145-195 km/s including systematic uncertainties), consistent with previous determinations but with smaller error bars. Our detection of shear at large angular radii sets a 95% confidence lower limit s>140′′s>140^{\prime\prime}, corresponding to a physical radius of 260h−1260h^{-1} kpc, implying that galaxy halos extend to very large radii. However, it is likely that this is being biased high by diffuse matter in the halos of groups and clusters. We also present a preliminary determination of the galaxy-mass correlation function finding a correlation length similar to the galaxy autocorrelation function and consistency with a low matter density universe with modest bias. The full SDSS will cover an area 44 times larger and provide spectroscopic redshifts for the foreground galaxies, making it possible to greatly improve the precision of these constraints, measure additional parameters such as halo shape, and measure the properties of dark matter halos separately for many different classes of galaxies.Comment: 28 pages, 11 figures, submitted to A

    Benthic foraminifera living in Gulf of Mexico bathyal and abyssal sediments : community analysis and comparison to metazoan meiofaunal biomass and density

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2617-2626, doi:10.1016/j.dsr2.2008.07.011.Benthic foraminiferal biomass, density, and species composition were determined at ten sites in the Gulf of Mexico. During June 2001 and June 2002, sediment samples were collected with a GoMex boxcorer. A 7.5-cm diameter subcore was taken from a box core collected at each site and sliced into 1-cm or 2-cm sections to a depth of 2 or 3 cm; the >63-mm fraction was examined shipboard for benthic foraminifera. Individual foraminifers were extracted for adenosine triphosphate (ATP) using a luciferin-luciferase assay, which indicated the total ATP content per specimen; that data was converted to organic carbon. Foraminiferal biomass and density varied substantially (~2-53 mg C m-2; ~3,600-44,500 individuals m-2, respectively) and inconsistently with water depth. For example, although two ~1000-m deep sites were geographically separated by only ~75 km, the foraminiferal biomass at one site was relatively low (~9 mg C m-2) while the other site had the highest foraminiferal biomass (~53 mg C m-2). Although most samples from Sigsbee Plain (>3000 m) had low biomass, one Sigsbee site had >20 mg foraminiferal C m-2. The foraminiferal community from all sites (i.e., bathyal and abyssal locales) was dominated by agglutinated, rather than calcareous or tectinous, species. Foraminiferal density never exceeded that of metazoan meiofauna at any site. Foraminiferal biomass, however, exceeded metazoan meiofaunal biomass at five of the ten sites, indicating that foraminifera constitute a major component of the Gulf’s deep-water meiofaunal biomass.Funded by Minerals Management Service contract 1435-01-99-CT-30991 to G.T. Rowe (Texas A&M University)

    Climate Change and Our Environment: The Effect on Respiratory and Allergic Disease

    Get PDF
    Climate change is a constant and ongoing process. It is postulated that human activities have reached a point at which we are producing global climate change. This article provides suggestions to help the allergist/environmental physician integrate recommendations about improvements in outdoor and indoor air quality and the likely response to predicted alterations in the earth’s environment into their patient’s treatment plan. Many changes that affect respiratory disease are anticipated. Examples of responses to climate change include energy reduction retrofits in homes that could potentially affect exposure to allergens and irritants, more hot sunny days that increase ozone-related difficulties, and rises in sea level or altered rainfall patterns that increase exposure to damp indoor environments. Climate changes can also affect ecosystems, manifested as the appearance of stinging and biting arthropods in new areas. Higher ambient carbon dioxide concentrations, warmer temperatures, and changes in floristic zones could potentially increase exposure to ragweed and other outdoor allergens, whereas green practices such as composting can increase allergen and irritant exposure. Finally, increased energy costs may result in urban crowding and human source pollution, leading to changes in patterns of infectious respiratory illnesses. Improved governmental controls on airborne pollutants could lead to cleaner air and reduced respiratory diseases but will meet strong opposition because of their effect on business productivity. The allergy community must therefore adapt, as physician and research scientists always have, by anticipating the needs of patients and by adopting practices and research methods to meet changing environmental conditions

    Evaluation Research and Institutional Pressures: Challenges in Public-Nonprofit Contracting

    Get PDF
    This article examines the connection between program evaluation research and decision-making by public managers. Drawing on neo-institutional theory, a framework is presented for diagnosing the pressures and conditions that lead alternatively toward or away the rational use of evaluation research. Three cases of public-nonprofit contracting for the delivery of major programs are presented to clarify the way coercive, mimetic, and normative pressures interfere with a sound connection being made between research and implementation. The article concludes by considering how public managers can respond to the isomorphic pressures in their environment that make it hard to act on data relating to program performance.This publication is Hauser Center Working Paper No. 23. The Hauser Center Working Paper Series was launched during the summer of 2000. The Series enables the Hauser Center to share with a broad audience important works-in-progress written by Hauser Center scholars and researchers

    Daptomycin versus standard therapy for bacteremia and endocarditis caused by Staphylococcus aureus.

    Get PDF
    BACKGROUND: Alternative therapies for Staphylococcus aureus bacteremia and endocarditis are needed. METHODS: We randomly assigned 124 patients with S. aureus bacteremia with or without endocarditis to receive 6 mg of daptomycin intravenously per kilogram of body weight daily and 122 to receive initial low-dose gentamicin plus either an antistaphylococcal penicillin or vancomycin. The primary efficacy end point was treatment success 42 days after the end of therapy. RESULTS: Forty-two days after the end of therapy in the modified intention-to-treat analysis, a successful outcome was documented for 53 of 120 patients who received daptomycin as compared with 48 of 115 patients who received standard therapy (44.2 percent vs. 41.7 percent; absolute difference, 2.4 percent; 95 percent confidence interval, -10.2 to 15.1 percent). Our results met prespecified criteria for the noninferiority of daptomycin. The success rates were similar in subgroups of patients with complicated bacteremia, right-sided endocarditis, and methicillin-resistant S. aureus. Daptomycin therapy was associated with a higher rate of microbiologic failure than was standard therapy (19 vs. 11 patients, P=0.17). In 6 of the 19 patients with microbiologic failure in the daptomycin group, isolates with reduced susceptibility to daptomycin emerged; similarly, a reduced susceptibility to vancomycin was noted in isolates from patients treated with vancomycin. As compared with daptomycin therapy, standard therapy was associated with a nonsignificantly higher rate of adverse events that led to treatment failure due to the discontinuation of therapy (17 vs. 8, P=0.06). Clinically significant renal dysfunction occurred in 11.0 percent of patients who received daptomycin and in 26.3 percent of patients who received standard therapy (P=0.004). CONCLUSIONS: Daptomycin (6 mg per kilogram daily) is not inferior to standard therapy for S. aureus bacteremia and right-sided endocarditis. (ClinicalTrials.gov number, NCT00093067 [ClinicalTrials.gov].)
    • …
    corecore